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ABSTRACT: Several classes of multiple-mode rheologi-
cal constitutive equations are examined for predicting the
viscoelastic flow properties of a typical polymer melt in
single and double step-strain flows. The phenomenological
parameters appearing in these models have been obtained
by the fitting of experimental data taken in small-ampli-
tude oscillatory shear and steady shear flows. The per-
formance of the models for predicting the experimental
data in the step-strain experiments is examined in detail.

Specifically, we examine whether or not mode coupling is
necessary to describe the experimental behavior under
step-strain flows. Furthermore, it is demonstrated that the
reversing double step-strain experiment is a very powerful
tool for testing viscoelastic constitutive equations. � 2007
Wiley Periodicals, Inc. J Appl Polym Sci 105: 2884–2892, 2007
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INTRODUCTION

For many years, the overriding goal of theoretical
rheologists has been to obtain a level of understand-
ing of material behavior sufficient to allow for the
prediction of viscoelastic properties in arbitrary flow
fields. After many years of effort spent in pursuit of
this goal, it is still largely unachieved. In recent years,
modeling efforts have intensified as theoretical devel-
opments and computational power have increased. It
is now timely to reassess, in general terms, the pro-
gress made by rheologists toward achieving this goal.

In part I of this study,1 we presented a current
assessment of the potential predictive capabilities of
seven viscoelastic fluid models. Rather than focusing
on the particular models popular today (which might
not be popular a decade from now), we examined
instead semiphenomenological models (i.e., models
involving empirical parameters) that characterize a
certain class of model types. This allowed us to judge
the capabilities of the class using the simplest possible
methodology; that is, without getting caught up in
model-specific peculiarities and complexities.

The strategy of the research reported in this article
and ref. 1 is to fit the models examined herein to a
limited amount of easily obtained experimental data
of a typical polymer melt and then to test how well
each quantitatively predicts experimental data to

which the inherent model parameters have not been
explicitly fit. To accomplish this, we need an exten-
sive suite of experimental data on a single polymer,
all taken under the same state conditions (the same
temperature, pressure, etc.). Therefore, we focus our
attention on a single industrial linear low-density
polyethylene (LDPE) polymer melt and obtain experi-
mental data for this melt under the widest variety of
flow conditions possible. We believe that these experi-
mental data are very representative of the behavior of
many polymer melts, and thus our results are gener-
alizable to other polymers. Furthermore, the rheologi-
cal behavior of most polymeric liquids is qualitatively
independent of the state point of the experiment (i.e.,
the temperature of the experiment), so experimental
data obtained at one temperature can be used to infer
those at another—the so-called time–temperature
superposition principle.2

The model classes examined in the succeeding sec-
tions are as follows. The most basic semiphenomeno-
logical model class is that of the uncoupled (i.e., no
coupling between the various relaxation modes), lin-
ear relaxation models with constant relaxation times.
The most well known and widely used of these is the
multimode upper-convected Maxell model, and thus
we examine it herein. Of course, this model has no
hope of fitting any nonlinear viscoelastic properties;
however, we examine it as a basis for the linear visco-
elastic response exhibited by many other models in
the linear limit. The second class is that of uncoupled,
linear relaxation models with variable relaxation
times. Examples of models falling into this group are
the Phan-Thien/Tanner model,3 the modified upper-

Correspondence to: B. J. Edwards (bjedwards@chem.engr.
utk.edu).

Journal of Applied Polymer Science, Vol. 105, 2884–2892 (2007)
VVC 2007 Wiley Periodicals, Inc.



convected Maxwell model,4 and the extended White/
Metzner model (EWMM).5 Herein, we examine a ver-
sion of the EWMM as a representative of this class.
The third class is that of uncoupled, nonlinear relaxa-
tion models. The example of this class studied herein
is the Giesekus model.6 The remaining two classes of
viscoelastic fluid models examined herein are those
that involve coupled relaxation modes; that is, the
modes are no longer taken to be independent of each
other, as is the case in all the examples considered
previously. The first remaining class is that of the
pairwise coupled relaxation modes models, that is,
when each mode is taken to couple to one, and only
one, other relaxation mode. The second remaining
class is that in which each mode of a given model is
allowed to interact with every other mode.

In part I,1 we examined the performance of seven
multimode constitutive equations in small-amplitude
oscillatory shear flow (SAOSF), steady-state and tran-
sient shear flows, and uniaxial elongational flow. Fur-
ther information is expected to be obtained through
single and double step-strain flows. Single and dou-
ble step-strain shear flows are convenient and power-
ful methods for evaluating rheological constitutive
equations and examining the coupling effect among
the modes in rheological models.7,8 In a single step-
strain experiment, a shear strain of g is imposed on
the test sample at t ¼ 0 under the condition that g ¼ 0
for t < 0. The shear stress, s(g,t), is measured as a
function of time. As for a double step-strain experi-
ment, a shear strain of g1 is imposed on the test sam-
ple at t ¼ 0 under the condition that g ¼ 0 for t < 0;
then a second step of strain g2 is imposed at t ¼ t1 >
0. The extra stress s(g1,g2,t1,t) is monitored as a func-
tion of time.

Descriptions of double step-strain data have been
focused on the well-known nonlinear and time-de-
pendent Bernstein/Kearsley/Zappas model9 and the
Doi–Edwards (DE) reptation model.10 Many studies
have led to the similar conclusion that the BKZ model
cannot describe quantitatively reversing flows for
entangled linear polymers.11 Venerus and Kahvand12

carried out a thorough evaluation of DE theory, using
the double step-strain flow of monodisperse polysty-
rene solutions. Also, predictions of several models in
reversing shear flows were given by Wagner and
Ehrecke.13 Chodankar et al.14 examined the integral
and differential forms of the pompom model in single
and double step strains with respect to the experi-
mental behavior of an LDPE melt. Semianalytical
model predictions were also obtained for the stresses
in double step-strain shear flows in ref. 14.

The main premise of a double step-strain experi-
ment is the following: a given step strain is applied to
a sample, after which the sample begins to relax; after
it has partially (but not fully) relaxed, a second step
strain is applied to the sample. Hence, right before

the application of the second step strain, some of the
modes (with short relaxation times) will have com-
pletely relaxed, whereas those modes with long relax-
ation times will not have done so. If all modes are in-
dependent, then the long-time modes will have no
effect on the short-time modes. However, if mode
coupling occurs, some unusual hysteretic phenomena
might be observed under certain conditions.

In this part, we use seven different viscoelastic fluid
models to predict the stress of step-strain experi-
ments. The performance of these different models in
step-strain experiments is examined herein. All theo-
retical results presented in this article are predictions
of experimental data; that is, all parameter fitting was
performed in part I1 for SAOSF and steady shear
flow.

EXPERIMENTAL

The polymer studied herein was the same as that
described in part I.1 It was a typical, industrially rele-
vant LDPE sample. The LDPE sample was obtained
from Exxon (Newark, NJ). It was prepared with a Zie-
gler–Natta catalyst. This sample had a wide molecu-
lar weight distribution: the value of the polydispersity
index was 5.15. Its melt index was 0.2 g/min, with a
density of 0.923 g/cm3. The weight-average molecular
weight was 80,350 g/mol, as measured by gel perme-
ation chromatography.

The experiments were conducted with standard
rheological testing equipment and procedures at the
University of Tennessee. Step-strain measurements of
the relaxation stress and the corresponding strain
were made on the Advanced Rheometrics Expansion
System from Rheometrics Scientific (Newark, NJ) at
1758C. A cone and plate fixture with a 25-mm plate
diameter and a 0.1-rad cone angle was used for both
single and double step-strain experiments.

COMPUTATIONAL METHODS

A number of multiple-mode rheological models are
discussed and examined for the same sample in part
I,1 which presents the corresponding constitutive
equations for the rheological models examined: the
uncoupled Maxwell modes (UMM) model, the
uncoupled extended White/Metzner modes (UEWM)
model, the uncoupled Giesekus modes (UGM) model,
the pairwise coupled Maxwell modes (PCMM)
model, the pairwise coupled Maxwell modes model
with the White/Metzner-like extension (PCMM–
EWM), the fully coupled Maxwell modes (FCMM)
model, and the fully coupled Maxwell modes model
with the White/Metzner-like extension (FCMM–
EWM model). The parameters of all models were
attained by the fitting of experimental data for the
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storage and loss moduli in SAOSF and steady shear
material functions simultaneously. All the parameters
thus obtained are tabulated in part I.1

A schematic diagram of the strain versus the time
is shown in Figure 1, which demonstrates that, theo-
retically, an instantaneous strain, g0, is applied at time
t ¼ 0, but experimentally, the rheometer needs a cer-
tain amount of time (ca. 0.07 s) to reach the strain
required. The corresponding shear rate can be
attained through the strain data; therefore, the shear
stress can be computed theoretically through the con-
stitutive equations of the different models, as men-
tioned previously.

In refs. 11 and 15, the stress relaxation modulus,
G(t,g), is defined as the ratio of the resulting stress to
the step strain: G(t,g) ¼ s(t,g)/g0. We defined G(t,g) as
the ratio of the resulting stress to the step strain,
G(t,g) ¼ s(t,g)/g, because we consider the initial time
for the instrument to reach the applied strain, as dis-
cussed later.

RESULTS AND DISCUSSION

In the following discussion, only sample results are
given. For a full description of all experimental data
and model predictions, the reader is referred to ref. 16.

Single step-strain experiments

Figure 2 shows the time dependence of the shear
stress and stress relaxation modulus under various
step strains. For the applied strains (g ¼ 1, 20, or
400%), the value of the stress increases quickly and
reaches a maximum in less than 0.1 s and then
decreases as the polymer melts relax after the strain
reaches the value applied. The value of the stress
relaxation modulus decreases right after the strain is

applied. Single step-strain experiments at lower strain
values for the same polymer melts have been exam-
ined in detail;16 these showed that the values of the
stress relaxation moduli are not related to the value of
strain and that the stress relaxation moduli obey
time–strain factorability. At higher values of the
applied strain, outside of the linear viscoelastic re-
gime, time–strain factorability broke down.

The prediction of the different models generally
agreed with experiment in the low-strain limit. Here,
we present the predictions of the FCMM–EWM
model as an example, which are shown in Figure 3.
As can be seen in the figure, the predictions of the
models are generally excellent.

Outside the linear viscoelastic regime, for higher
strain values, the different model predictions vary

Figure 1 Typical variation, both theoretical and experi-
mental, of the strain with the time in a step-strain shear
flow.

Figure 2 Experimental data for stress s (symbols) and
stress relaxation modulus G (curves) versus time t in sin-
gle step-strain experiments.

Figure 3 Stress s and stress relaxation modulus G versus
time t, as predicted with the FCMM–EWM model, in sin-
gle step-strain experiments. Unfilled symbols represent ex-
perimental s data, filled symbols represent G data, contin-
uous curves are model predictions of G, and dashed lines
are predictions of s.
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dramatically. In this work, we will compare the
model predictions at the high strain value of 400%.
Figure 2 illustrates that in the higher strain region, the
relaxation moduli decrease and the stress increases
with increasing strain. Theoretical results of stress
and stress relaxation moduli were computed with the
seven viscoelastic fluids models. The UMM, FCMM,
UGM, UEWM, and FCMM–EWM model predictions
are displayed in Figures 4–8. The PCMM and
PCMM–EWM models performed similarly to the
FCMM and FCMM–EWM models, respectively, and
so are not presented for clarity.

Figure 4 demonstrates that the UMM model can
predict the stress and stress relaxation modulus fairly
well for the lower strain value, except that this model
underpredicts both of them in the long-time region (t

> 19.5 s). This implies that the UMM model does not
have a large enough relaxation time resulting from
the original parameter optimization, as already
observed in ref. 1. The UMM model overpredicts both
the stress and the relaxation moduli at g ¼ 400%
because this model cannot describe nonlinear visco-
elastic responses.

Figures 5 presents the predictions of the FCMM
model, which are qualitatively and quantitatively
similar to those of the PCMM model. In the small-
strain region, the model predicts the stress and modu-
lus fairly well at small times but substantially under-
predicts both at long times. For the higher strain
value (400%), both the stress and modulus predictions
are quite poor at all times. Note that the predictions
of this model have a distinct waviness with respect to
time. As explained before,1,16,17 this behavior is

Figure 4 Stress s and stress relaxation modulus G versus
time t, as predicted with the UMM model, in single step-
strain experiments. Unfilled symbols represent s data,
filled symbols represent G data, solid lines are s predic-
tions, and broken lines are G predictions.

Figure 5 Stress s and stress relaxation modulus G versus
time t, as predicted with the FCMM model, in single step-
strain experiments. The symbols and lines are the same as
described in Figure 4.

Figure 6 Stress s and stress relaxation modulus G versus
time t, as predicted with the UGM model, in single step-
strain experiments. The symbols and lines are the same as
described in Figure 4.

Figure 7 Stress s and stress relaxation modulus G versus
time t, as predicted with the UEWM model, in single step-
strain experiments. The symbols and lines are the same as
described in Figure 4.
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caused by the unrealistic Maxwellian type of relaxa-
tion assumed by this model.

Figure 6 presents the theoretical predictions of the
stress and modulus provided by the UGM model.
This figure shows that the UGM model can describe
the time variation of the stress and stress relaxation
modulus fairly well for both small and large strain
values, although some small deviations exist after
about 20 s. Figure 7 displays the predictions of the
UEWM model for the stress and modulus. The pre-
dictions for the lower strain value are very reasona-
ble, but both the stress and modulus are underpre-
dicted for all times at the higher strain value. In Fig-
ure 8, predictions for the stress and stress relaxation
modulus from the FCMM–EWM model are compared
to the experimental data. Good consistency is found
between the predictions from the model and the ex-
perimental data for the lower strain, but for g ¼ 400%,
this model also underpredicts the stress and stress
relaxation modulus over the entire time span. Predic-
tions of the PCMM–EWM model (not shown) are sim-
ilar qualitatively to those of the FCMM–EWM model
but are not nearly as good quantitatively.

From Figures 3–8, we can conclude that (1) all the
models examined herein can generally describe the
evolution of the relaxation moduli with time at lower
strain values and small times, (2) most of the models
cannot capture the long-time behavior at small
strains, and (3) the UGM model is the only one that
can provide quantitative matches of the experimental
data for high and low strains over the entire span of
time.

Double step-strain experiments

Generally, there are two types of double step-strain
experiments. Type I occurs when the total strain, g2,

after the second applied strain is larger than the first
applied strain, g1. Type II occurs when g2 is smaller
than g1. The latter case is often called a reversing dou-
ble step-strain experiment. We examined both types
of double step-strain experiments. Because the per-
formance of each model after the first step is virtually
the same as that in a single step-strain experiment,
except that the allowed time for the relaxation of the
polymer melt is much shorter, we will focus our
attention on times after the application of the second
step. In all cases, the second step strain was applied
at t ¼ 2 s: we felt that this time was long enough for
the small relaxation time modes to have fully relaxed
(assuming no mode coupling), but not the long relax-
ation time modes. (Note that the relaxation times
of each mode for all models can be found in refs. 1
and 16.)

Results of type I (g2 > g1) double
step-strain experiments

In type I double step-strain experiments at low strain
values, the comparison between model predictions
and experimental data was very similar to that of the
single step-strain experiments and will not be pre-
sented here. The interested reader can refer to ref. 16
for details.

The results for the stress computed with the UMM,
PCMM, FCMM, and UGM models for the type I
experiment (g1 ¼ 200% and g2 ¼ 400%) are shown in
Figure 9. Results from the UEWM, PCMM–EWM,
and FCMM–EWM models are shown in Figure 10.
The figures show a marked differentiation of the vari-
ous models from one another to a degree not seen in
the single step-strain experiments. The basic trends
are the same as before, but the long-time behavior has
been highly exaggerated. The UMM model overpre-

Figure 8 Stress s and stress relaxation modulus G versus
time t, as predicted with the FCMM–EWM model, in sin-
gle step-strain experiments. The symbols and lines are the
same as described in Figure 4.

Figure 9 Stress s versus time t, as predicted with the
UMM, PCMM, FCMM, and UGM models, in double step-
strain experiments at strains of g1 ¼ 200% and g2 ¼ 400%.
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dicts the stress for all times, again because these large
strain values lie outside the regime of linear viscoelas-
ticity. The PCMM, FCMM, EWM, FCMM–EWM, and
PCMM–EWM models all underpredict the experi-
mental data to various degrees, with the FCMM and
PCMM models again performing the worst, especially
at long times. Only the UGM model gives an accurate
prediction of the stress for all but the longest times.
For this experiment, the UGM model is clearly the
best of the seven.

Results of type II (g2 < g1) double
step-strain experiments

From the previous subsection, it is clear that double
step-strain experiments, at least at high strain values,
can provide very critical tests of viscoelastic fluid

models. That conclusion is emphasized in type II dou-
ble step-strain experiments, even at small strain val-
ues. In this experiment, the stress can change sign at
some point in time after the application of the second
step strain because the direction of the strain has been
reversed. Because the stress value right after the
application of the second strain in a type II experi-
ment changes sign, we present the absolute values of
the stress as functions of time on a log–log scale. This
turned out to be a very severe test of a viscoelastic
fluid model to capture the point in time of this sign
change.

In Figure 11, we give the performance of several
models in type II double step-strain experiments for
lower strain values (g1 ¼ 30% and g2 ¼ 15%). The
FCMM model predictions are very poor: The sign
change of the stress is grossly underpredicted, as is
the long-time experimental behavior. Again, this is in
congruence with the results of part I,1 which showed
that this model was not particularly good at describ-
ing even steady-state nonlinear viscoelastic proper-
ties. The FCMM–EWM, UMM, and UGM models all
offer surprising good predictions of the transient
stress behavior for most points in time, although the
UMM model does show significant deviations at long
times. The PCMM, EWM, and PCMM–EWM models
(not shown) all gave predictions resembling that of
the FCMM model.16

Figures 12 and 13 present comparisons between the
experimental data and model predictions of all seven
models for the type II experiment at large strain val-
ues (g1 ¼ 400% and g2 ¼ 200%). For this higher strain
experiment, the models are greatly differentiated
from one another. This occurs not only after the appli-
cation of the second strain but also before its applica-
tion, as discussed previously for the single step-strain
experiments: many of the models cannot predict the

Figure 10 Stress s versus time t, as predicted with the
UEWM, PCMM–EWM, and FCMM–EWM models, in dou-
ble step-strain experiments at strains of g1 ¼ 200% and g2
¼ 400%.

Figure 11 Stress s versus time t, as predicted with the
UMM, FCMM, UGM, and FCMM–EWM models, in double
step-strain experiments at strains of g1 ¼ 30% and g2
¼ 15%.

Figure 12 Stress s versus time t, as predicted with the
UMM, PCMM, FCMM, and UGM models, in double step-
strain experiments at strains of g1 ¼ 400% and g2 ¼ 200%.
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correct stress behavior for high strain values in the
simpler experiment. Consequently, those models that
could not predict the single step-strain experiment
are at a disadvantage with respect to those that could
do so.

In Figures 12 and 13, five of the seven models could
not predict the sign change of the shear stress. Only
the UMM and UGM models caught the sign change,
the former rather paradoxically. The UGM model
shows good agreement with the experimental data
for all but the longest times and thus appears to be
the best model of the seven examined. It is rather sur-
prising that the FCMM–EWM model performs so
poorly, given that it performed fairly well in the sin-
gle step-strain and type I double step-strain experi-
ments. We conjecture that the reason this model per-

forms so poorly in this case is that the coupling effect
between the modes causes the shorter relaxation time
modes to activate at smaller times than their relaxa-
tion times would indicate and the longer time modes
to activate at larger times.18,19 This would effectively
spread out the relaxation time spectrum, leaving a
hole in the middle of the range; this would effectively
blind the model to intermediate timescale relaxation
phenomena.

Results of a special case (g2 ¼ 0) in type II double
step-strain experiments

In the special case (g2 ¼ 0) of the type II double step-
strain experiment, most polymeric fluids satisfy the
consistency relation (called the Osaki–Kimura rela-

Figure 13 Stress s versus time t, as predicted with the
UEWM, PCMM–EWM, and FCMM–EWM models, in dou-
ble step-strain experiments at strains of g1 ¼ 400% and g2
¼ 200%.

Figure 14 Stress s versus time t, as predicted with the
UMM, PCMM, FCMM, and UGM models, in double step-
strain experiments at strains of g1 ¼ 400% and g2 ¼ 0.

Figure 15 Stress s versus time t, as predicted with the
UEWM, PCMM–EWM, and FCMM–EWM models, in dou-
ble step-strain experiments at strains of g1 ¼ 400% and g2
¼ 0.

Figure 16 � N1ðg1;t;t1Þ
sðg1;t;t1Þ ratios predicted from the different

models in the double step-strain experiment at strains of
g1 ¼ 400% and g2 ¼ 0.
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tion) � N1ðg1;t;t1Þ
sðg1;t;t1Þ ¼ g1, where N1(g1,t,t1) is the first nor-

mal stress difference and s(g1,t,t1) is the shear stress
after the second strain is applied.20,21 Here, we
checked this consistency relationship for our polymer
melt. Unfortunately, we could not obtain the experi-
mental data for the first normal difference in the dou-
ble step-strain experiment because of device limita-
tions. What we could do, however, was to check
whether the predictions of the different models
obeyed this consistency relation.

The results of the stress predicted with the UMM,
PCMM, FCMM, and UGM models for the type II
experiment (g1 ¼ 400% and g2 ¼ 0) are shown in
Figure 14. The corresponding results from the
UEWM, PCMM–EWM, and FCMM–EWM models are
shown in Figure 15. The shear stress is plotted as the
absolute value of the stress as a function of time in
Figures 14 and 15. The values of the stress are nega-
tive after the application of the second strain. Figures
14 and 15 demonstrate that all the models can give a
good prediction for the largest absolute value of the
negative stress. Also, all the models can generally
describe the trend of the stress evolution with time.
The stress from the PCMM and FCMMmodels demon-
strates some waviness, as usual, and both of these
models underpredict the stress for long times. The
UEWM, PCMM–EWM, and FCMM–EWM models
give fair predictions after the strain returns to its origi-
nal position, although they underpredict the stress in
the first strain region. The UGM model again performs
very well throughout the course of the experiment.

In Figure 16, we plot the ratio � N1ðg1;t;t1Þ
sðg1;t;t1Þ as a func-

tion of time after the second strain is applied for all
seven models. This ratio increases right after the sec-
ond strain is applied and then reaches a steady-state
value after a certain amount of time has elapsed
(which is different for each model). In Table I, we list
the steady-state value of this ratio. From the Osaki–
Kimura relation, this ratio should be g1, and, in this
case, its value should be 4.0. From Table I, we see that
the UMM model gives an outrageously high predic-
tion, whereas the others predict values between 3.19
and 5.90.

CONCLUSIONS

Single and double step-strain experiments are power-
ful tools for examining viscoelastic constitutive

equations. Seven constitutive equations were tested
against experimental data from these experiments
after the fitting of the requisite parameters in part
I.1 In general, most models could predict well exper-
imental data of the single step-strain experiment at
small strain values and short times, but most of
these had difficulty at long times. For higher strain
values, most models gave incorrect predictions for
the data, with the exception of the UGM model. In
the double step-strain experiments, only the UGM
model could faithfully capture the short- and
long-time behavior of the polymer melt for both
low and high strains. Indeed, the UGM model even
outperformed the FCMM–EWM model, which con-
tains roughly twice as many parameters.1 Thus, it
appears that the quadratic relaxation behavior pres-
ent in the UGM model is very important for describ-
ing the experimental data of real polymer melts and
that the mode-coupling effect is of secondary impor-
tance.

Although not reported herein, we also examined
the effects of replacing the linear elastic spring behav-
ior in each of the seven models with finitely extensi-
ble nonlinear elastic spring forces (FENE-P springs).
This turned out not to have an effect on the model
predictions in most of the flows of ref. 1 and this arti-
cle, even though the number of parameters increased
accordingly. Details of this additional work can be
found in ref. 16.
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